CH32幻彩灯控 - WS2812及同等类型灯珠的四种驱动方式

CH32幻彩灯控 - WS2812及同等类型灯珠的四种驱动方式

目录WS2812时序方式一,IO翻转驱动方式二,定时器PWM+DMA驱动方式三,SPI驱动方式四,PIOC驱动总结

当下ARGB(Addressable RGB)盛行,用CH32也可轻松施展灯光魔法;以CH32X035为例分析驱动WS2812幻彩LED灯珠的四种方式。

WS2812时序

WS2812是集控制电路与发光电路于一体的LED,采用单线数据协议,每24bit数据控制总线上的一颗LED。但此处的bit不等同于二进制中的位,它由自己的一段时序代表最小的信息量单位,分别为0码和1码,还有Reset码,典型时序如下图:

24bit 的数据结构为每 8bit 控制一种颜色, bit[23:16] 代表 Green 绿色,灰度为0~255, bit[15:8] 代表 Red 红色, bit[7:0] 代表 Blue 蓝色,同理灰度都为0~255;在发送数据时按照GRB的顺序高位先发。

方式一,IO翻转驱动

1、IO初始化,配置GPIO为推挽输出,初始化为低电平;

2、IO翻转的时间,通过写寄存器的方式来翻转IO电平,逻辑分析仪测量CH32X035在48M主频下的IO翻转的时间如下,高电平执行时间45ns,低电平执行时间40ns;

3、控制输出时序;

void WS2812_0(void) // 输出0码

{

/* T0H - 300ns , T0L - 600ns */

GPIOA->BSHR = (GPIO_Pin_0 & (uint32_t)0x0000FFFF); // 高电平时间 45ns

GPIOA->BSHR = (GPIO_Pin_0 & (uint32_t)0x0000FFFF);

GPIOA->BSHR = (GPIO_Pin_0 & (uint32_t)0x0000FFFF);

GPIOA->BSHR = (GPIO_Pin_0 & (uint32_t)0x0000FFFF);

GPIOA->BSHR = (GPIO_Pin_0 & (uint32_t)0x0000FFFF);

GPIOA->BSHR = (GPIO_Pin_0 & (uint32_t)0x0000FFFF);

GPIOA->BSHR = (GPIO_Pin_0 & (uint32_t)0x0000FFFF);

GPIOA->BCR = GPIO_Pin_0; // 低电平时间 40ns

GPIOA->BCR = GPIO_Pin_0;

GPIOA->BCR = GPIO_Pin_0;

GPIOA->BCR = GPIO_Pin_0;

GPIOA->BCR = GPIO_Pin_0;

GPIOA->BCR = GPIO_Pin_0;

GPIOA->BCR = GPIO_Pin_0;

GPIOA->BCR = GPIO_Pin_0;

GPIOA->BCR = GPIO_Pin_0;

GPIOA->BCR = GPIO_Pin_0;

GPIOA->BCR = GPIO_Pin_0;

GPIOA->BCR = GPIO_Pin_0;

GPIOA->BCR = GPIO_Pin_0;

GPIOA->BCR = GPIO_Pin_0;

GPIOA->BCR = GPIO_Pin_0;

}

void WS2812_1(void) // 输出1码

{

/* T1H - 600ns , T1L - 600ns */

GPIOA->BSHR = (GPIO_Pin_0 & (uint32_t)0x0000FFFF); // 高电平时间 45ns

GPIOA->BSHR = (GPIO_Pin_0 & (uint32_t)0x0000FFFF);

GPIOA->BSHR = (GPIO_Pin_0 & (uint32_t)0x0000FFFF);

GPIOA->BSHR = (GPIO_Pin_0 & (uint32_t)0x0000FFFF);

GPIOA->BSHR = (GPIO_Pin_0 & (uint32_t)0x0000FFFF);

GPIOA->BSHR = (GPIO_Pin_0 & (uint32_t)0x0000FFFF);

GPIOA->BSHR = (GPIO_Pin_0 & (uint32_t)0x0000FFFF);

GPIOA->BSHR = (GPIO_Pin_0 & (uint32_t)0x0000FFFF);

GPIOA->BSHR = (GPIO_Pin_0 & (uint32_t)0x0000FFFF);

GPIOA->BSHR = (GPIO_Pin_0 & (uint32_t)0x0000FFFF);

GPIOA->BSHR = (GPIO_Pin_0 & (uint32_t)0x0000FFFF);

GPIOA->BSHR = (GPIO_Pin_0 & (uint32_t)0x0000FFFF);

GPIOA->BSHR = (GPIO_Pin_0 & (uint32_t)0x0000FFFF);

GPIOA->BSHR = (GPIO_Pin_0 & (uint32_t)0x0000FFFF);

GPIOA->BCR = GPIO_Pin_0; // 低电平时间 40ns

GPIOA->BCR = GPIO_Pin_0;

GPIOA->BCR = GPIO_Pin_0;

GPIOA->BCR = GPIO_Pin_0;

GPIOA->BCR = GPIO_Pin_0;

GPIOA->BCR = GPIO_Pin_0;

GPIOA->BCR = GPIO_Pin_0;

GPIOA->BCR = GPIO_Pin_0;

GPIOA->BCR = GPIO_Pin_0;

GPIOA->BCR = GPIO_Pin_0;

GPIOA->BCR = GPIO_Pin_0;

GPIOA->BCR = GPIO_Pin_0;

GPIOA->BCR = GPIO_Pin_0;

GPIOA->BCR = GPIO_Pin_0;

GPIOA->BCR = GPIO_Pin_0;

}

void WS2812_Reset(void) // 输出Reset码

{

/* RES 低电平280us以上 */

GPIOA->BCR = GPIO_Pin_0;

Delay_Us(300);

}

4、调用以上函数组成IO输出的时序,控制RGB色彩;

方式二,定时器PWM+DMA驱动

1、定时器初始化,重装载值(10-1);预分频值(6-1);可得PWM频率 800K Hz,PWM选择模式1,输出极性配置为高,即低于比较值时输出有效电平,且有效电平为高;

void TIM1_PWMOut_Init(void)

{

GPIO_InitTypeDef GPIO_InitStructure={0};

TIM_OCInitTypeDef TIM_OCInitStructure={0};

TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure={0};

RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOB, ENABLE );

RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

GPIO_Init(GPIOB, &GPIO_InitStructure );

TIM_TimeBaseInitStructure.TIM_Period = 10-1;

TIM_TimeBaseInitStructure.TIM_Prescaler = (SystemCoreClock/8000000)-1; // 800K Hz

TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;

TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;

TIM_TimeBaseInit( TIM1, &TIM_TimeBaseInitStructure);

TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; // PWM1

TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;

TIM_OCInitStructure.TIM_Pulse = 0;

TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; // 输出极性高

TIM_OC1Init( TIM1, &TIM_OCInitStructure );

TIM_OC1PreloadConfig( TIM1, TIM_OCPreload_Enable ); ///通道1

TIM_ARRPreloadConfig( TIM1, ENABLE );

TIM_Cmd( TIM1, ENABLE );

}

2、DMA初始化,DMA方向为内存到外设,即将比较值从内存搬运至定时器的比较寄存器;DMA传输数据宽度为半字,且不开启循环模式,

3、使能PWM输出;

4、使能DMA传输修改定时器比较值来控制PWM占空比,PWM周期为1250ns,根据每bit数据决定PWM输出的占空比,来控制输出0码(高电平30%,低电平70%)或1码(高电平50%,低电平50%);

方式三,SPI驱动

1、SPI初始化,主机模式,数据宽度8位,每字节控制WS2812的一个bit(最小时序码),即24字节控制一颗LED;

2、设置RGB的缓存,每24字节控制一颗灯珠,以输出三颗灯珠依此为为绿红蓝为例:

uint8_t SPI_Tx_Buffer[] = {

0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x0F, // G - 0x01

0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, // R - 0x00

0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, // B - 0x00

0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, // G - 0x00

0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x0F, // R - 0x01

0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, // B - 0x00

0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, // G - 0x00

0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, // R - 0x00

0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x0F, // B - 0x01

};

3、SPI发送,输出RGB

for(uint8_t i=0;i<(24*3);i++) // 每24字节控制一颗灯珠,共3颗

{

SPI_I2S_SendData(SPI1, SPI_Tx_Buffer[i]);

while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) != SET);

}

Delay_Us(300); // Reset

方式四,PIOC驱动

CH32X035内嵌了一个可编程协议IO微控制器,可实现单线输出;

1、设置RGB缓存,以三颗灯珠为例;

u8 RGBpbuf[] = {

0x01, 0x00, 0x00, // G-R-B

0x00, 0x01, 0x00,

0x00, 0x00, 0x01,

};

2、输出通道初始化,若选择PC18或PC19为输出通道,则须先关闭PC18和PC19默认的 SWD 功能;

3、根据缓存输出RGB

uint16_t total_bytes;

u8* RGB_RAM;

RGB1W_Init( );

stat = 0x80;

while(1)

{

total_bytes = rgb_data_bytes;

Delay_Ms(200);

stat = 0x80;

if ( stat != 0xFF )

{

if ( stat < 0x80 )

{

if ( stat == RGB1W_ERR_OK ) printf("1-wire finished\r\n");

else printf("1-wire error %02x\r\n", stat);

stat = 0x80; // free

}

if ( stat == 0x80 && total_bytes )

{ //RAM mode for 1~3072 bytes data

stat = 0xFF; // wait

RGB_RAM = RGBpbuf;

RGB1W_SendRAM( total_bytes, RGB_RAM ,0);

total_bytes = 0;

}

}

if ( PIOC->D8_SYS_CFG & RB_INT_REQ ) { // query if disable interrupt

stat = PIOC->D8_CTRL_RD; // auto remove interrupt request after reading

}

}

总结

四种方式均可驱动WS2812及其同等类型的LED灯珠,可根据引脚资源和具体应用环境自由选择,以CH32X035为例参考程序如下:

CH32X035_WS2812.zip

风雨相关